Thank you for choosing an LNS Chip Conveyor. We are proud to have you among our LNS family of users.

LNS Chip Conveyors simply and reliably remove waste from machining operations. Machine efficiency is increased and operator safety is improved since the conveyors work with little operator attention and without interrupting production time. LNS Conveyors are available for many types of machine tools or other applications. They can be arranged to deliver wet or dry waste to containers or to conveyor or chute-type disposal systems. For further information, contact:

Inside Sales Department
LNS TURBO
203 Turbo Drive
Kings Mountains, NC 28086

This Service Manual is intended to assist with the normal maintenance that will assure long service life of your LNS Chip Conveyor. It is in two parts – a Service Instruction Section, followed by a Parts Section, which includes drawings and parts lists for the basic elements of the conveyors.
NOTICE

ALL INFORMATION CONTAINED IN THIS MANUAL IS INTENDED TO BE CORRECT; HOWEVER INFORMATION AND DATA IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. LNS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS INFORMATION OR DATA. FURTHER, LNS IS NOT RESPONSIBLE FOR ANY OMISSIONS OR ERRORS OR CONSEQUENTIAL DAMAGE CAUSED BY THE USER OF THE PRODUCT. LNS RESERVES THE RIGHT TO MAKE MANUFACTURING CHANGES WHICH MAY NOT BE INCLUDED IN THIS MANUAL.

LNS supplies data necessary for the proper instruction, test, operation and maintenance of this product. LNS retains all proprietary rights in and to the information so disclosed and such shall not be reproduced, copied, or used in whole or in part for purposes other than those for which it is furnished.

TABLE OF CONTENTS

CONTENTS PAGE
Introduction & Table of Contents .. 1
Instructions for Ordering Parts .. 2
Warranty ... 2
Installation and Startup Maintenance 3
Lubrication and Routine Maintenance 3
Torque Limiter Operation and Adjustment 4-5
Service Section .. 6-11
 Conveyor Belt Removal & Installation 6-9
 Conveyor Belt Tensioning .. 9-10
 Motor & Drive and Sprocket Alignment 10-11
Trouble Shooting ... 12
Belt Assembly .. 13
Top Mount Parallel Gear Motor Parts 14-15
Optional Chip Stripper Bar ... 16-17
Optional Air Header Assembly 18-20
Electrical Information ... 21-24
 Electrical Safety Information 21
 Time Delay Devices .. 22
 AC Current Requirements 22
 Optional Variable Speed Control 22-23
 Electrical Box Parts ... 24

INSTRUCTIONS FOR ORDERING PARTS

FURNISH THE FOLLOWING INFORMATION ON YOUR ORDER:
• MODEL AND SERIAL NO. OF MACHINE
• CATALOG NUMBER AND NAME OF PART
• QUANTITY REQUIRED
• PURCHASE ORDER NUMBER
• BILL TO ADDRESS

FURNISH EXACT SHIPPING INSTRUCTIONS:
• COMPLETE SHIPPING ADDRESS
• MODE OF DELIVERY
• PARCEL POST, TRUCK LINE, ETC
HOW TO FIND THE MODEL AND SERIAL NUMBER OF YOUR MACHINE:
The machine model number and serial number is stamped on the machine nameplate located on the motor cover.

DIRECT YOUR ORDER TO:
LNS Turbo
203 Turbo Drive
Kings Mountain, NC 28086 U.S.A.
Telephone: (704) 739-7111 Fax: (704) 739-6039

WARRANTY

LNS conveyors carry a warranty against defective material or workmanship during manufacture of the conveyor for one year in service or eighteen months from shipment, whichever occurs first. LNS will repair or replace, at its option, free of charge except freight, FOB shipping point, any parts it finds nonconforming on these conditions:

a. on request, user promptly allows LNS to inspect, and user returns all requested parts to LNS’ plant, and
b. user has operated and maintained products in accordance with LNS’ maintenance and operational literature and good business practice has been used; and

Seller warrants products manufactured by others to the extent warranted by their original manufacturers, on these conditions. Parts, which have expected life shorter than one year under normal usage, are excluded.

USED PRODUCTS ARE SOLD AS IS UNLESS OTHERWISE AGREED UPON AT THE TIME OF PURCHASE. SELLER MAKES NO WARRANTY FOR USED PRODUCTS EXCEPT AS TO TITLE. BUYER MAY INSPECT AND TEST BEFORE SHIPMENT AND ACCEPTS USED PRODUCTS ON THESE TERMS.

THIS WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER WRITTEN, ORAL, OR IMPLIED, (INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE.)
INSTALLATION AND STARTUP

Your LNS conveyor has been run prior to shipment to insure proper operation. However, it is recommended that the following checks be made before startup:

Conveyor Drive
Check frame and belt for damage during shipment or storage.
Locate conveyor in operating position.
All drive elements (pulleys and sprockets) should be located close to their bearing supports. Each set of pulleys and sprockets should be carefully aligned to prevent excessive wear and noise.
Drive chains and belts should be properly tensioned.
Check speed reducer to see that oil is at proper level. If there is a shipping plug in gearbox vent, remove it.

Leveling
Level should be placed across tail section and on bottom cover at discharge, perpendicular to travel of the belt. Adjust conveyor support leg, if so equipped, or shim as necessary to level.

Electrical Controls
If conveyor is supplied with electrical controls, check voltage of system supplied to be sure it matches with that to be used. Read the Electrical Controls section in this manual for more details before installing the conveyor.

A qualified electrician in accordance with local codes must connect electrical equipment to power source. If the conveyor power source is the basic machine, refer to the basic machine manufacturers wiring diagram.

DO NOT DRILL HOLES IN CONVEYOR FRAME TO MOUNT POWER BOXES OR ACCESSORIES WITHOUT FIRST CONSULTING LNS.

Upon start-up of the conveyor, check the belt movement direction.
Arrows show **forward** movement of belt on a **hinged belt** conveyor. The normal belt direction is **opposite** of arrows on a **drag link** conveyor.

DISCHARGE

CAUTION!
ALWAYS DISCONNECT POWER TO THE CONVEYOR BEFORE ATTEMPTING ANY MAINTENANCE PROCEDURES.
LUBRICATION AND ROUTINE MAINTENANCE

After First 100 Hours of Operation and at regularly scheduled intervals to suit operating conditions:

Check belt, wipers for excessive wear.
Inspect conveyor belt parts for excessive wear. If excessive wear is noted, belt should be removed and repaired.
(Refer to service section for belt removal instructions).
Change oil in speed reducer (if applicable). Use any brand 90-wt. gear oil.
Grease pillow block bearings, using grease gun. Do not grease too often – bearing seals could be damaged.
Check belt tension (see page 10).
Oil drive chains.

CAUTION!
ALWAYS DISCONNECT POWER TO CONVEYOR BEFORE ATTEMPTING ANY MAINTENANCE PROCEDURES.

TORQUE LIMITER OPERATION AND ADJUSTMENT

The torque limiter is a torque control device, which will slip under excessive load, but will automatically carry the desired load after the excessive load has been eliminated. This device has been preset at the factory to insure drive motor protection and to prevent conveyor damage if the drive shaft is put under excessive load. If an overload occurs, the cause of this condition should be determined and corrected promptly, since prolonged slippage can cause damage to the friction disc in the torque limiter. Normally the torque limiter does not require any adjustment after it has slipped. In case the torque limiter requires adjustment, please read and follow the attached instructions.

Torque Limiter Adjustment
Before doing any maintenance on the equipment, always follow Lockout/Tagout procedures. The torque limiter should not require any adjustment when working under normal machining operations. However, if it is determined that adjustment must be made, follow the attached procedures:

1. Remove the drive cover.
2. Remove the drive chain.
3. Remove the adjusting nut, lock washer, spring, pressure plate and one friction disc.
4. Insure that both friction discs are free of oil or moisture.
5. Install the bushing over the hub and pilot the sprocket over the bushing. Re-assemble the friction disc, pressure plate with the smooth side to the friction disc, spring, lock washer with spring pilot facing the spring, and the adjusting nut.
6. Advance the adjusting nut to a finger tight position, insuring that the spring is piloted on the lock washer.
7. Match mark the adjusting nut with the hub. Advance the adjusting nut 1 turn for the desired break away torque.
8. After the break away torque is set, bend the tabs of the lock washer over the hex flats of the adjusting nut.

If a problem occurs refer to the Trouble Shooting Section on page 12 of this manual.

Please contact LNS’ Service Department before adjusting the torque limiter if the torque limiter continuously detents after the above procedure has been followed. If the torque limiter clutch adjustment is too tight, this device will not function as a safeguard for the motor. This situation can cause damage to the drive motor and/or the conveyor frame.

Please fill in the blanks below with the conveyor model and serial number for your reference.
CAUTION!

IF THE TORQUE LIMITING CLUTCH ADJUSTMENT IS TOO TIGHT, IT WILL NOT FUNCTION AS A SAFEGUARD FOR THE MOTOR

THE TORQUE LIMITING CLUTCH IS PRESET AT THE FACTORY. READ THE TORQUE LIMITER INSTALLATION INSTRUCTION BEFORE MAKING ANY ADJUSTMENTS.

LNS CONVEYOR TORQUE LIMITING CLUTCH

[Diagram of a torque limiting clutch with labels for Sprocket, Spring, Lock Washer, Adjusting Nut, Pressure Plate, Set Screw, Hub, Bushing, Friction Disc, and Pressure Plate]
SERVICE SECTION

Most smaller assemblies of the conveyor, such as the drive and torque limiter, can be disassembled by careful reference to the parts drawings on the pages that follow. However, the belt and related parts can be removed by following the sequence described below. Refer to the Part Section in this manual for belt part designation/catalog number.

HINGE BELT REMOVAL AND INSTALLATION INSTRUCTIONS

1. If possible, rotate the belt so that the master link (link pin with cotter key) should be located so that it is accessible through the drive shaft adjustment slot.
2. Disconnect power to the conveyor before performing any work on the belt.
3. Remove the cover over the torque limiting clutch, discharge cover and drive chain.

4. Take the master link out of the roller drive chain between the torque limiting clutch and motor and remove the chain.
5. Loosen the lock nuts on the belt tension adjusting screws (located just behind each of the pillow block bearings on the drive shaft) and back off the adjusting screws until they are flush with the face of the adjusting bracket.
6. Loosen the two bolts holding each pillow block bearing.
7. Slide the drive shaft toward the tail of the conveyor as far as the adjusting slots for the pillow block bearings will allow. This will provide maximum slack in the belt.
8. Working through the drive shaft adjustment slot, remove the cotter pin from master link pin. If it is not possible to rotate the belt so that the master link pin is not accessible through the bearing adjustment slot, either take a chisel and remove the crimp on the end of the pin or grind off the crimped end of the pin. Note: the master link is normally positioned on at least one hinge plate with wiper cleats.

NOTE: Some conveyor belt designs have headed link pins. If the head of the link pin is on the torque limiter side of the conveyor, the torque limiter must be removed before the headed pin can be removed through the drive shaft adjustment slot. The torque limiter assembly can be removed by removing the set screws which attaches this assembly to the drive shaft.

9. Being careful to catch the flat washer and roller, pull the hinge pin out through the adjustment slot.

10. Grasp the end of belt below the drive shaft and pull the belt out of the conveyor. Be sure to wear gloves to avoid being cut by sharp edges on the belt. When only a few feet of belt remain in the conveyor, the belt on the floor will have enough weight to begin pulling the remainder out on its own. As the last of the belt begins to run out faster, don't attempt to stop it; just stand clear and let it run out onto the floor. Note that the belt was moved in the direction opposite normal belt travel.
11. Before moving the old belt out of the way, pay particular attention to the way the side wings overlap. When the belt is running in the normal direction of travel, the leading ends of the side wings are outboard, and the trailing ends are inboard.

12. Place the new belt on the floor beneath the conveyor discharge, being careful to orient it in the same direction as the old one that was removed.

13. If there is not already a hinge pin in the end of the belt, use the pin and rollers that were removed to separate the old belt. There must be a pin and rollers in the extreme end of the belt for ease of insertion.

14. With a person standing on either side of the belt, lift up the lead end and start it in the lower track, from which the old belt was pulled out. Be sure and wear gloves to prevent injury, and be sure to maintain a secure hold on the belt until at least five feet have been fed into the conveyor frame. At this point, the weight of the belt inside the frame should be enough to prevent it running back out on its own.

15. Continue feeding the belt into the conveyor frame. One person may have to use a length of 2 x 4 or a pry bar to "help" it along from time to time. Force should not be required. Many times the belt can be pushed in all the way around from the discharge end. If the belt hangs up, look for some obstruction; don't force it.

16. When the lead end of the belt reaches the drive shaft, carefully feed it up over the drive sprockets.

17. Remove the hinge pin and rollers that were used to help guide the belt through the track.
18. With the ends of the belt engaged in the teeth around the top and bottom of the drive sprockets, the two ends should join. At this point, it may be necessary to remove one or more hinge plates from the new belt. Most new belts are supplied longer than necessary.

19. Reverse steps 1 through 7.

20. When adjusting belt tension, clamp a pair of vise grip pliers on one of the formed cleats on the belt. Use the vise grips to "rock" the belt back and forth to feel the slack and drag on the belt. There should not be more than enough slack to allow rocking the drive shaft through 15 degrees of rotation without moving the belt. On a new belt, zero slack is O.K., but if the belt is difficult to move with the vise grips, it's too tight. Correctly adjusted, it should be possible, if difficult, to move the belt with one's gloved hands by turning the torque limiter sprocket.

21. Visually confirm the belt is located in the center of the frame. Adjust if necessary by loosening the setscrews in the pillow block bearings and shifting the drive shaft; torque limiter and all; to the left or right as appropriate.

22. Re-connect power and test run the conveyor. The belt should run freely and the only sound should be a subdued clicking as each hinge plate passes over the drive sprocket.

WARNING!

Hinge plates can pinch hands and fingers.

CONVEYOR BELT TENSIONING

Correct conveyor belt tension is essential to ensure proper operation and extended life of conveyor components. The belt has been properly tensioned during factory assembly. As normal wear occurs the belt may become slack and need adjustment.

The following factors may be used to determine if the belt needs adjustment.

- **Belt Too Loose:** Belt Slack at exit point of the drive sprocket before re-entry into frame. (See fig. 1).
- **Belt Too Tight:** Belt has intermittent jerks and a popping sound while conveyor is in operation.
- **Uneven Tension (side to side):** (1) Belt tends to track to one side (2) Excessive wear on outside of side wings.

![Fig. 1](image1)

INCORRECT CORRECT

Check to see that torque limiter sprocket is square to the bearing-mounting bracket. If it is not, this will generally indicate which direction the belt is off on side-to-side tension.

![Fig. 2](image2)

INCORRECT CORRECT
Once it is determined that retensioning of the belt is necessary, the following procedure should be followed:

Instructions for Checking Conveyor Belt Tension
1. Position belt with a link pin directly below the conveyor drive shaft.
2. Hold a straightedge across the bottom of the conveyor discharge at the very rear.
3. Using a 6-inch scale, measure vertically from the straightedge up to the underside of the belt.
4. Push up on the underside of the belt and repeat the measurement as in step 3.
5. Under the force applied by the average worker, the measurement in step 4 should be approximately 1/16 inch (1.5mm) greater than the measurement in step 3.

Belt Tensioning Procedure
1. Install belt as stated in Parts and Service Manual (see procedure starting on page 6), except do not install drive chain or tension belt. (Drive chain and preload exaggerates and/or alters torque reading.)
2. Tighten pillow block bearing bolts, then loosen five (5) ¼ turns. (This step ensures that bearing is parallel to bearing mount surface, and that lockwasher is not adding additional torque to reading.)
3. Set torque wrench to 25 inch pounds. Tighten each bearing adjusting bolt alternately until 25 inch pounds is obtained and torque wrench no longer turns adjusting bolt, but clicks at rotation.
4. Manually rotate belt back and forth. (This distributes tension evenly throughout belt.)
5. Repeat steps (3) and (4) until belt rotation no longer results in decreased torque setting. (This step ensures that both sides of belt are tensioned equally.) Lock adjusting bolts.
6. Run machine for (2) hour break-in period.
7. Remove drive chain. Loosen adjusting bolt locknuts. Loosen bearing bolts as noted in step (2). Repeat steps (3), (4) and (5). The belt must be retorqued to obtain correct tension after break in period (see guide below).

NOTE: Belts with discharge heights in excess of 50” or load length in excess of 8 ft. may require higher torque settings. Contact LNS if assistance is needed.

Torque Guide
- Overall Length to 225”.................25 in. lbs.
- Overall Length 225” to 375”.........35 in. lbs.
- Overall Length 375” and over45 in. lbs.

NOTE: Material use, application and incline angle can affect required torque settings. Drag link type conveyors may also experience torque variances due to conveyor length and chip loads.

CAUTION!
ALWAYS DISCONNECT POWER TO CONVEYOR BEFORE ATTEMPTING ANY MAINTENANCE PROCEDURES.

Motor and Drive Shaft & Sprocket Alignment
Proper alignment of sprockets and shafts are essential for smooth operation of conveyors and long lasting service of the conveyor chain and the drive chain. To ensure correct alignment, follow these steps.

1. Level the motor and drive shaft using a level.
2. Align the motor and drive shaft for parallelism using a straight edge or a scale. The sprocket should be parallel to the shaft within +/- 1 mm.

3. Align the motor sprocket with the torque limiter sprocket axially on the shafts using a straight bar, straightedge or stretched wire as illustrated below. Centering accuracy should be within 2 mm.

DRIVE CHAIN TENSION
Proper tension for the drive chain is extremely important because:
1. When the chain is too tight, the additional load results in faster wear on the chain joints, sprocket teeth and shaft bearings.
2. When the chain is too slack, vibration could cause excessive chain wear, noise or shock loading.

For most horizontal and incline drives, the chain should be installed with an amount of sag in the unloaded span amounting to about 2 percent of the sprocket center distance length. Sag, then, becomes the measure of chain tension. For example if the span length between the sprocket centerlines, as shown below, are 18” then the sag should be 3/8” if the belt is tensioned correctly.

To measure the actual amount of sag, one side of the chain should be pulled up tight, allowing all of the excess chain to accumulate in the opposite span. A straight edge over the sprockets and a scale can be used to measure the sag. The chain tension should be checked on a regular basis and adjustments made as necessary.
TROUBLE SHOOTING GUIDE

The following chart will show some problems and their probable causes and possible solutions.

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>POSSIBLE SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conveyor has Stalled and the torque limiter slips</td>
<td>(1) Chip jam</td>
<td>Let torque limiter slip for ten to fifteen seconds, this will often clear jam. (Do not let torque limiter clutch slip for extended period of time.) If jam does not clear with above procedure, run conveyor in reverse no more than 4 to 6 inches. Start conveyor in proper direction to see if jam has cleared. If jam has not cleared, find it and remove obstruction.</td>
</tr>
<tr>
<td></td>
<td>(2) Belt tension</td>
<td>Refer to Belt Tension section on page 10.</td>
</tr>
<tr>
<td></td>
<td>(3) Tail disc</td>
<td>Check for loose or missing screws.</td>
</tr>
<tr>
<td></td>
<td>(4) Side wings bent or missing</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>(5) Cotter pin missing from link pin</td>
<td>Replace cotter pin.</td>
</tr>
<tr>
<td></td>
<td>(6) Torque Limiter adjustment</td>
<td>Refer to torque limiter adjustment sections on page 4.</td>
</tr>
<tr>
<td></td>
<td>(7) Sludge and/or chip inside frame</td>
<td>Remove belt and clean.</td>
</tr>
<tr>
<td>Belt flutter</td>
<td>Incorrect belt tension</td>
<td>Refer to Belt Tensioning section on page 10.</td>
</tr>
<tr>
<td>Excessive wear on outside of side wings</td>
<td>(1) Belt misalignment</td>
<td>Look for sideward motion of belt caused by loose sprockets. If necessary separate the belt, align sprockets and retighten set screw.</td>
</tr>
<tr>
<td></td>
<td>(2) Uneven side to side tension</td>
<td>Refer to Tensioning section on page 10.</td>
</tr>
<tr>
<td></td>
<td>(3) Leveling</td>
<td>Check leveling of frame to insure it is not twisted. If necessary, adjust leveling screws located in foot until conveyor has correct leveling.</td>
</tr>
<tr>
<td></td>
<td>(4) Chip jam inside frame</td>
<td>Remove belt and clean frame.</td>
</tr>
<tr>
<td>Motor overloads kick out excessively</td>
<td>(1) Loose connection</td>
<td>Check and tighten.</td>
</tr>
<tr>
<td></td>
<td>(2) Undersized heater</td>
<td>Match full load amps on motor plate and replace heaters.</td>
</tr>
<tr>
<td></td>
<td>(3) Sludge/Chip build-up inside frame</td>
<td>Remove belt and clean.</td>
</tr>
<tr>
<td></td>
<td>(4) Defective gear reducer and/or motor</td>
<td>Replace as needed.</td>
</tr>
</tbody>
</table>

WARNING!

NEVER ATTEMPT TO CLEAR A JAMMED CONVEYOR WITHOUT FIRST TURNING OFF THE POWER TO THE CONVEYOR. NEVER USE HANDS TO CLEAR A JAM – USE A TOOL.
STANDARD AND HEAVY DUTY BELT

![Diagram of conveyor belt components]

NOTE: Your conveyor may not appear exactly as shown here. However, the individual parts can be identified from these parts plates. (Follow ordering instructions.)

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>CATALOG NO.</th>
<th>PART NAME</th>
<th>ITEM NO.</th>
<th>CATALOG NO.</th>
<th>PART NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75B-3</td>
<td>Hex Head Screw</td>
<td>7</td>
<td>75B-11</td>
<td>Hex Head Screw</td>
</tr>
<tr>
<td></td>
<td>75B-4</td>
<td>Lock washer</td>
<td>8</td>
<td>75B-90</td>
<td>Side Wing (Right Hand), (Shown)</td>
</tr>
<tr>
<td></td>
<td>75B-5</td>
<td>Idler (Tail Disc)</td>
<td></td>
<td>75B-91</td>
<td>Side Wing (Left Hand)</td>
</tr>
<tr>
<td>2</td>
<td>75B-6</td>
<td>Hinge Plate w/ Cleat</td>
<td>9</td>
<td>75B-14</td>
<td>Roller</td>
</tr>
<tr>
<td>3</td>
<td>75B-7</td>
<td>Hinge Plate</td>
<td>10</td>
<td>75B-108</td>
<td>Washer</td>
</tr>
<tr>
<td>4</td>
<td>75B-8</td>
<td>Hinge Plate w/ Wiper Cleat</td>
<td>11</td>
<td>75B-16</td>
<td>Link Pin</td>
</tr>
<tr>
<td>5</td>
<td>75B-9</td>
<td>Wiper</td>
<td>12</td>
<td>75B-17</td>
<td>Cotter Pin</td>
</tr>
<tr>
<td>6</td>
<td>75B-10</td>
<td>Washer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TOP MOUNT PARALLEL GEAR MOTOR

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NAME</th>
<th>CATALOG NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Top cover – incline</td>
<td>75B-32</td>
</tr>
<tr>
<td>51</td>
<td>Drive cover</td>
<td>75B-26</td>
</tr>
<tr>
<td>52</td>
<td>Parallel gear motor (specify voltage)</td>
<td>75B-76</td>
</tr>
<tr>
<td>53</td>
<td>Bearing adjusting screw, .500-13 x 4</td>
<td>75B-31</td>
</tr>
<tr>
<td>54</td>
<td>Pillow block bearing</td>
<td>75B-56</td>
</tr>
<tr>
<td>55</td>
<td>Drive shaft weldment</td>
<td>75E-1</td>
</tr>
<tr>
<td>56</td>
<td>Adjustable leg extension assembly</td>
<td>75B-40</td>
</tr>
<tr>
<td>57</td>
<td>Idler (Tail Disc)</td>
<td>75B-39</td>
</tr>
<tr>
<td>58</td>
<td>Hex nut, flat, 1/2"</td>
<td>75B-50</td>
</tr>
<tr>
<td>59</td>
<td>Washer, lock, 1/2"</td>
<td>75B-50-13</td>
</tr>
<tr>
<td>60</td>
<td>Hex nut, lock, 1/2"</td>
<td>75B-60</td>
</tr>
<tr>
<td>61</td>
<td>Washer, lock, 1/2"</td>
<td>75B-60-13</td>
</tr>
<tr>
<td>62</td>
<td>Discharge cover</td>
<td>75B-60-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NAME</th>
<th>CATALOG NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top cover – incline</td>
<td>75B-32</td>
</tr>
<tr>
<td>2</td>
<td>Drive cover</td>
<td>75B-26</td>
</tr>
<tr>
<td>3</td>
<td>Parallel gear motor (specify voltage)</td>
<td>75B-76</td>
</tr>
<tr>
<td>4</td>
<td>Bearing adjusting screw, .500-13 x 4</td>
<td>75B-31</td>
</tr>
<tr>
<td>6</td>
<td>Pillow block bearing</td>
<td>75B-56</td>
</tr>
<tr>
<td>22</td>
<td>Drive shaft weldment</td>
<td>75E-1</td>
</tr>
<tr>
<td>28</td>
<td>Adjustable leg extension assembly</td>
<td>75B-40</td>
</tr>
<tr>
<td>32</td>
<td>Idler (Tail Disc)</td>
<td>75B-39</td>
</tr>
<tr>
<td>34</td>
<td>Hex nut, flat, 1/2"</td>
<td>75B-50</td>
</tr>
<tr>
<td>35</td>
<td>Washer, lock, 1/2"</td>
<td>75B-50-13</td>
</tr>
<tr>
<td>37</td>
<td>Hex nut, lock, 1/2"</td>
<td>75B-60</td>
</tr>
<tr>
<td>45</td>
<td>Washer, lock, 1/2"</td>
<td>75B-60-13</td>
</tr>
<tr>
<td>47</td>
<td>Discharge cover</td>
<td>75B-60-12</td>
</tr>
</tbody>
</table>

part of the above assembly
OPTIONAL CHIP STRIPPER BAR

A chip stripper bar is an adjustable, serrated steel bar mounted under the belt, near the discharge end of the conveyor, designed to snag stringy chips and prevent them from being carried back down into the conveyor frame.

Normally the chip stripper bar should be mounted as shown below so the serrations on the bar are positioned to snag the chips as the belt travels around the sprocket at its lowest point. Periodically as the conveyor belt is adjusted to maintain proper belt tension, the chip stripper bar will need to be adjusted accordingly to maintain the serrated teeth position to the belt.

If the chip stripper bar is not purchased from the factory with the conveyor, but is ordered as a retrofit option, the following procedure should be followed to install the chip stripper bar.

1. Layout and drill three (3) .281 diameter holes in each side of the conveyor frame as shown below.
2. Locate the chip stripper bar per the sketch above and mount it to the conveyor frame using the hardware provided with this option. See the sketch below for proper hardware mounting.

(8826-1015)
1/4-20 X 5/8 BUTTON HD. SCREW (4)

(8855-1009)
1/4 LOCK WASHER (4)

(8850-1004)
1/4-20 HEX NUT (4)
OPTIONAL AIR HEADER INSTALLATION AND OPERATION

The conveyor may be equipped with an air header assembly. An air header is an attachment mounted under the belt, near the discharge end, that directs multiple streams of compressed air onto the belt to dislodge small chips that might otherwise be carried back down into the conveyor frame. Cutting applications for aluminum, brass and other non-ferrous materials are good candidates for the use of an air header since these types of chips tend to cling to the belt and do not fall off of the conveyor belt easily at the discharge.

This assembly ships loose with the conveyor. To assemble this unit, follow the procedure below:

1. Mount the regulator bracket to the conveyor side frame using the two hex head cap screws, lock washers and flat washer provided. There will be a block welded to the side frame of the conveyor for mounting this bracket.

2. Insert the air header manifold tube through mounting holes in the conveyor discharge and secure it with the button head screw, flat washer and lock washer provided. (Note: insert the screw from the inside of the conveyor discharge as shown below).

3. Connect the air hose provided to the air header input. The fitting on the end of the hose slides over the end of the air header manifold tube.

4. Connect customer supplied shop air to the regulator input (quick connect male fitting supplied). The normal air pressure required is 10 to 20 p.s.i. depending upon the conveyor belt width (see the air requirement chart below). However, use the lowest pressure required that effectively removes the chips from the belt. If the pressure is too high, coolant misting may occur.

<table>
<thead>
<tr>
<th>AIR REQUIREMENT CHART (CFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELT WIDTH (INCHES)</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>
AIR HEADER ASSEMBLY
Turbo Econveyor Parts and Service Manual

Air Header Basic Assembly

<table>
<thead>
<tr>
<th>PART NAME</th>
<th>ITEM NO.</th>
<th>CATALOG NO.</th>
<th>PART NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female Elbow (9866-1040)</td>
<td>5</td>
<td>75C-211</td>
<td>Quick Connect Coupling (9874-1019)</td>
</tr>
<tr>
<td>Hose Nipple Barb Fitting (8874-1801)</td>
<td>6</td>
<td>75C-212</td>
<td>Mounting Bracket, Regulator (9873-1003)</td>
</tr>
<tr>
<td>Hose Clamp (9874-1020)</td>
<td>7</td>
<td>75C-213</td>
<td>Air Regulator with Gage (9888-1039)</td>
</tr>
<tr>
<td>Air Hose (9874-1019)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL INFORMATION

LNS Chip Conveyors are supplied with a variety of drive packages and electrical controls, depending on conveyor application and customer preference. Only a qualified electrician or machine service technician should perform any maintenance, repairs or adjustments on this equipment.

WARNING!

ONLY QUALIFIED ELECTRICIAN OR SERVICEMAN SHOULD PERFORM ANY ELECTRICAL TROUBLESHOOTING OR MAINTENANCE TO THIS EQUIPMENT.

DO NOT PERFORM ANY MAINTENANCE, REPAIRS OR ADJUSTMENTS ON THIS EQUIPMENT WITHOUT FIRST LOCKING OUT ALL ELECTRICAL CONTROLS.

PERSONNEL SHOULD BE TRAINED IN OSHA COMPLIANT LOCK-OUT/TAG-OUT AND ELECTRICAL SAFETY PROCEDURES.

MAKE CERTAIN THAT THE POWER SUPPLY IS DISCONNECTED BEFORE ATTEMPTING TO SERVICE OR REMOVE ANY COMPONENTS!

AT NO TIMES SHOULD CIRCUIT CONTINUITY BE CHECKED BY SHORTING TERMINALS WITH A SCREWDRIVER OR OTHER METAL DEVICE.

NEVER SHOULD ADJUSTMENTS, MAINTENANCE OR CLEANING BE PREFORMED WITHOUT FOLLOWING PROPER SAFETY PROCEDURES IN ACCORDANCE WITH LOCAL, STATE AND NATIONAL SAFETY CODES.

Before making any electrical connections insure that the voltage for which the conveyor drive and control are wired is the same as incoming voltage being delivered by the electric power supply. Failure to do so may result in injury or damage to the equipment. It may be necessary in the cases where the motor has dual motor voltage ratings, for example 230/460V, 3 phase, for example, to change the motor wiring from one voltage to another. Normally a wiring diagram is located inside the motor terminal box, which indicates proper wiring for the incoming voltage supplied.

Some machines are equipped with internal electrical controls and a multi-pin type accessory plug for connecting the chip conveyor. LNS Chip Conveyors can be ordered with a mating plug, so that connecting the conveyor is as simple as plugging it in.

The best and most common source of power for the chip conveyor is the machine electrical cabinet. It is the customer’s responsibilities at the time of order to determine what, if any, electrical components are present and/or order the appropriate conveyor control.

Even if the machine has no plug or other provision for connecting a chip conveyor, the conveyor should be ordered from LNS with both halves of a quick-disconnect style plug. One half will come pre-wired to the conveyor control cable. The other half of the plug will be wired to the machine electrical cabinet where it will be connected to the power supply. The chip conveyor can then be quickly unplugged for cleaning or service without having to disconnect "hard wired" connections.
Before starting the chip conveyor, check to be sure no tools, packing, or other material have been left on the belt or in the discharge opening. Start the conveyor and verify proper direction of belt travel. Reverse polarity if the belt is moving in the wrong direction. Check the rotation of the filter drum and backwash coolant pump. If either of these motors is running backwards, reverse the polarity. If the conveyor belt, filter drum or backwash pump runs backwards for an extended period of time it may result in the conveyor not operating effectively and/or cause damage to the conveyor.

TIME DELAY DEVICES
The use of a time delay device is not suggested for use on any chip conveyor. If the chip conveyor is not running when the machine tool is cutting chips it may cause a large chip build up in the conveyor frame. When the conveyor is finally turned on it may not be able to handle the chip load. This condition may cause belt and/or frame damage to the chip conveyor. LNS will not be responsible for damage caused to chip conveyors when a time delay device is being used.

AC SUPPLY CIRCUIT AMP LOAD FOR CONVEYORS
Your LNS chip conveyor may be equipped with an AC motor and a variable speed AC inverter control unit. The full load amp draw of the AC drive is based on the horsepower of the AC motor, as well as the input AC voltage.

The conveyor motor control circuit is not separately fused. The customer must provide a circuit breaker or a fused disconnect switch on the power supply to the conveyor.

It may be necessary to change a circuit protection device on the incoming power supply line to accommodate the higher full load amp draw. Refer to the following tables to determine the full load amp draw on the AC supply circuit:

AC CURRENT REQUIREMENTS

<table>
<thead>
<tr>
<th>Voltage 3PH Line-Line</th>
<th>HZ</th>
<th>Belt Drive Type</th>
<th>Belt Drive Horsepower</th>
<th>Current per phase at Rated Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>220-277 60</td>
<td></td>
<td>Fixed Speed</td>
<td>¼</td>
<td>0.84 Amps</td>
</tr>
<tr>
<td>380-480 60</td>
<td></td>
<td></td>
<td>¼</td>
<td>0.42 Amps</td>
</tr>
<tr>
<td>220-277 60</td>
<td></td>
<td>Variable Speed</td>
<td>¼</td>
<td>1.00A *</td>
</tr>
<tr>
<td>380-480 60</td>
<td></td>
<td></td>
<td>¼</td>
<td>0.50A *</td>
</tr>
</tbody>
</table>

* 84% average inverter efficiency

OPTIONAL 3 PHASE AC VARIABLE SPEED BELT DRIVE CONTROLLER

DANGER!

IMPROPER OPERATION OF THIS CONTROL MAY CAUSE INJURY TO PERSONNEL OR CONTROL FAILURE. THE CONTROL MUST BE OPERATED IN ACCORDANCE WITH LOCAL, STATE AND NATIONAL SAFETY CODES. ONLY A QUALIFIED ELECTRICIAN OR SERVICEMAN SHOULD PERFORM ANY ELECTRICAL TROUBLESHOOTING OR MAINTENANCE.

THE CONVEYOR CONTROL CIRCUIT IS NOT SEPARATELY FUSED. THE USER MUST PROVIDE EITHER A CIRCUIT BREAKER OR A FUSED DISCONNECT SWITCH ON THE INPUT AC LINE IN ACCORDANCE WITH ALL APPLICABLE ELECTRICAL CODES.
As an option, the conveyor can be controlled by a variable speed inverter drive located on the conveyor electrical control panel. The AC variable speed belt drive controller is a controller that uses an AC variable frequency inverter to adjust the belt speed of the conveyor by simply adjusting the SPEED CONTROL potentiometer, which controls the inverter output frequency. The conveyor belt speed is adjustable from near zero to approximately 9 feet per minute. The belt speed should be set at the lowest possible speed that will remove chips fast enough to keep them from accumulating in the load section of the conveyor. Setting the belt speed too low may allow chips to build up in the horizontal load section of the conveyor and eventually cause a conveyor jam. Setting the belt speed too fast increases the amount of coolant carried out into the chip container.

Operation

The controller is designed for safe and convenient operation. All controls are mounted on the front cover; no access to the inside of the control enclosure is required.

Note: The variable speed control should not be used as an ON-OFF switch. Only the ON-OFF switch or the REV-STOP-FWD switch should be used to turn the conveyor motor on or off.

The control is designed for safe and convenient operation. All controls are mounted on the front cover. No access to the inside of the control enclosure is required.

The OFF/FORWARD switch controls the incoming line power to the inverter. It must be in the FORWARD position for the conveyor to operate.

A momentary JOG REVERSE button is provided on the variable speed control panel in case the belt direction must be momentarily reversed. This option in normally used to assist in clearing a conveyor jam if one occurs.

The SPEED CONTROL potentiometer controls the inverter output frequency. The conveyor belt speed can be varied from nearly zero to the maximum using this control.
STANDARD ELECTRICAL BOX (PARTS LIST)

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>CATALOG NO.</th>
<th>PART NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75A-100</td>
<td>Stop Push Button</td>
</tr>
<tr>
<td>2</td>
<td>75A-101</td>
<td>Reverse Push Button</td>
</tr>
<tr>
<td>3</td>
<td>75A-102</td>
<td>Forward Push Button</td>
</tr>
<tr>
<td>4</td>
<td>75A-103</td>
<td>Fuse (w/ Transformer Only)</td>
</tr>
<tr>
<td>5</td>
<td>75A-104</td>
<td>Transformer (optional)</td>
</tr>
<tr>
<td>6</td>
<td>75A-105</td>
<td>Overload Relay</td>
</tr>
<tr>
<td>7</td>
<td>75A-106</td>
<td>Magnetic Reversing Starter</td>
</tr>
</tbody>
</table>

NOTE: Your control may differ from the control panel shown. If so, contact LNS for service requirements.